Protein-protein docking Arrimage protéine-protéine

Dirk Stratmann https://stratmann.fr/cours/homology\_modeling dirk.stratmann@upmc.fr

Master M2 PSF, Sorbonne Université

octobre 2024

## Outline



#### Introduction

- Motivation
- Steps of protein-protein docking



- Protein-protein interaction
- Interactions protéine-protéine (PPI)
- Models
- Types of complexes

#### Scoring

- Scoring Functions
- Shape complementarity



3

#### **Rigid-body docking**

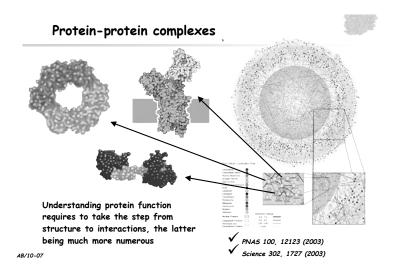
- Geometric docking
- Fast Fourier Transform (FFT) docking
- 5
- **Evaluation**
- Performance of docking programs CAPRI



#### Inclusion of experimental data

- NMR chemical shifts
- CS-HADDOCK






- Motivation
- Steps of protein-protein docking

# **Motivation**

#### Motivation

## **Protein function**



## Free proteins - Structural genomics

- 3D structure of a large number of unbound/free proteins solved => PDB
- Only about 1000 types of folds, almost all known.
- => Comparative modeling / Homology modeling

- Number of types of protein-protein interactions at least 10x times greater (> 10.000) than number of folds (1000).
- Experimental difficulties to solve protein-protein 3D structures.

#### Motivation

## Models of Protein Complexes

# What can we learn from 3D structures (models) of complexes?





AB/10-07

- Models provide structural insight into function and mechanism of action
- Models can drive and guide experimental studies
- Models can help understand and rationalize the effect of disease-related mutations
- Models provide a starting point for drug design

#### Motivation

## Protein-docking problem

#### M L Connolly (July 1986). In: Biopolymers 25.7

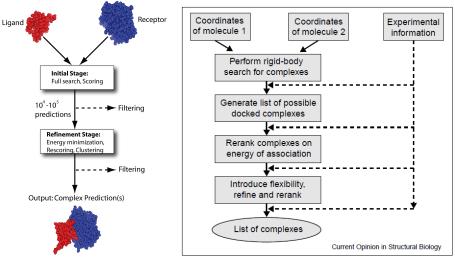
- Connolly has posed the protein-docking problem as: "Given the structures of any two proteins, is it possible to predict whether they associate, and if so, in what way?"
- Connolly was very optimistic at that time:
   "With a few years more development they stand a good chance of solving the protein-docking problem. If the protein-docking problem cannot be solved by a purely geometric approach, there remains the option of bringing in chemical considerations."
- The problem of docking molecules of any complexity based on the complementarity of their features has been shown to be NP-complete (Kuhl et al., 1984).

# Steps of protein-protein docking

## Representation, Sampling and Scoring

Three key ingredients:

- Representation of the system
- Global conformational space search
- Reranking of top solutions based on scoring function

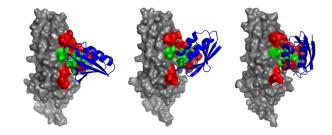

Similar steps as for protein folding Reviews:

Graham R Smith and Michael J E Sternberg (Feb. 2002). In: *Curr. Opin. Struct. Biol.* 12.1

Inbal Halperin et al. (June 2002). In: Proteins 47.4

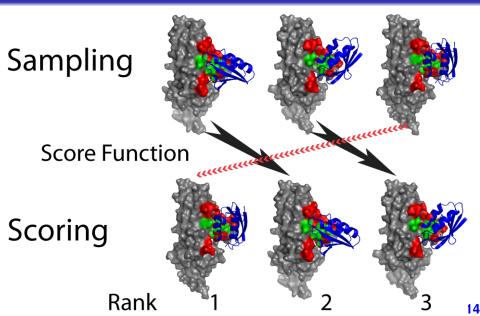
#### Protein Docking: General Methodology

Input: Individual Structures




Graham R Smith and Michael J E Sternberg (Feb. 2002). In: *Curr. Opin. Struct. Biol.* 12.1

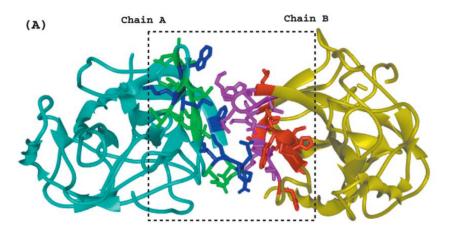
#### Steps of protein-protein docking


## Sampling and Scoring

# Sampling

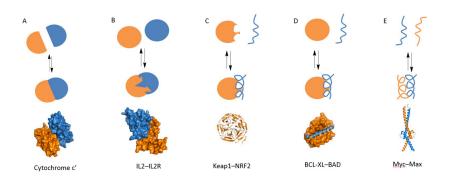


#### Steps of protein-protein docking


## Sampling and Scoring

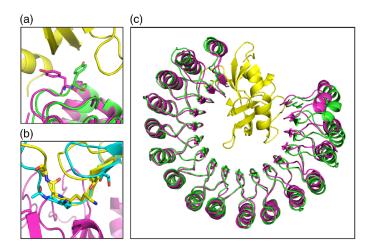


## 2 Protein-protein interaction


- Interactions protéine-protéine (PPI)
- Models
- Types of complexes

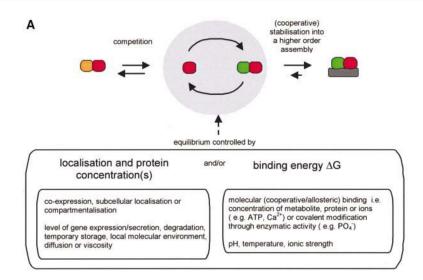
## Interface



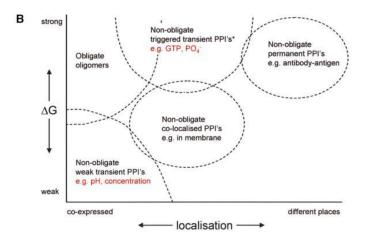

1fq3AB interface

# Changement conformationnel lors de l'interaction protéine-protéine



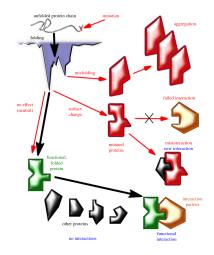

#### Scott et al. 2016

Changement conformationnel lors de l'interaction protéine-protéine



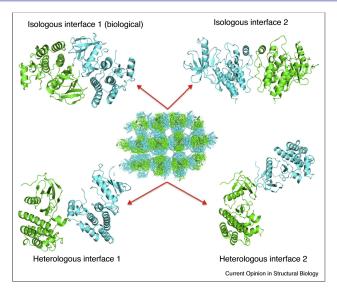

Siebenmorgen and Zacharias 2020

## Facteurs qui contrôlent l'association des protéines




## Relation entre les types de PPI, la localisation et l'affinité de liaison



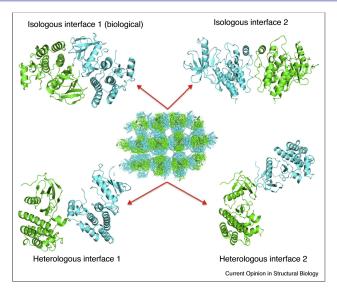

Nooren 2003

## Effets possible d'une mutation



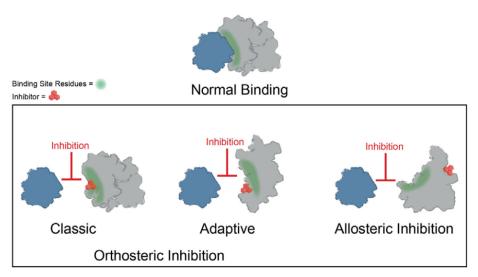
Sikosek and Chan 2014

## Isologues / Hétérologues

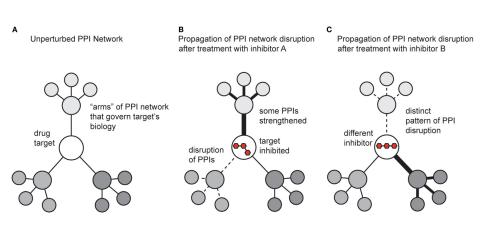



#### Xu and Dunbrack 2019

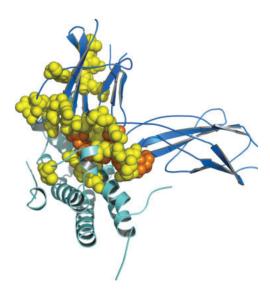
## Isologues / Hétérologues

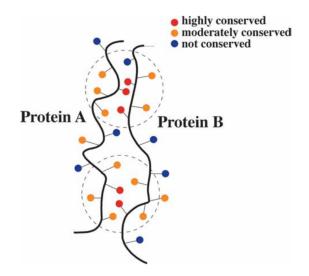

- Associations isologues: Le domaine de liaison est composé de deux unités identiques
- Associations isologues: Leurs interfaces ont une symétrie C2 (rotation 180 degrés permet de générer un monomer à partir de l'autre)
- Associations hétérologues: Le domaine de liaison est composé jusqu'à deux unités différentes
- Associations hétérologues: Leurs interfaces sont asymétriques

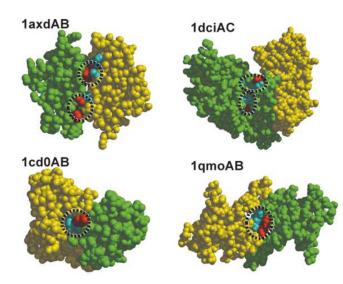
## Isologues / Hétérologues

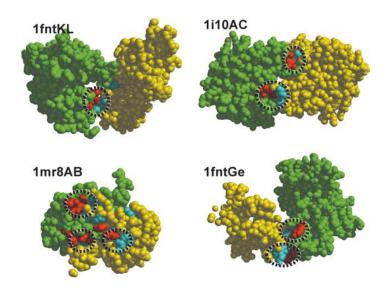


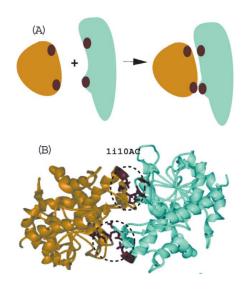

#### Xu and Dunbrack 2019


## Inhibition des PPI avec des petites molécules





## Inhibition des PPI avec des petites molécules





## Hot spots







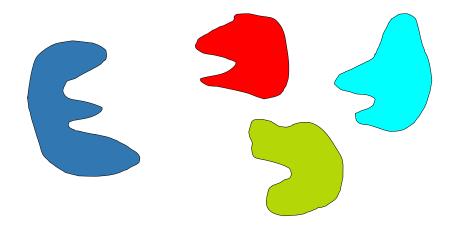




# Models



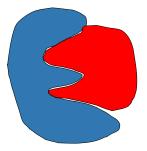


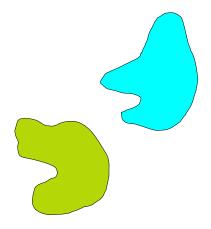

## Emil Fischer 1894

"To use an image, I would say that enzyme and glycoside have to fit into each other like a lock and a key, in order to exert a chemical effect on each other."

Source: Kohlbacher and Lenhof

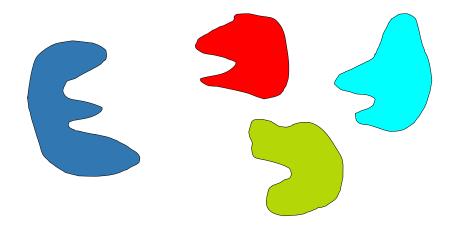
Models


## Lock and Key

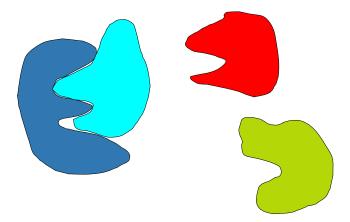



#### Source: Kohlbacher and Lenhof

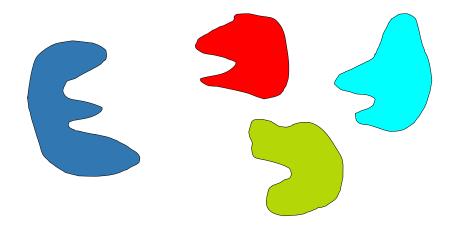
Models



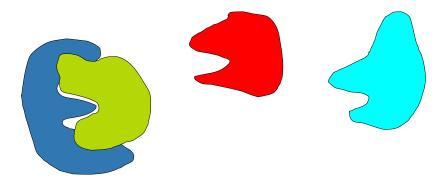


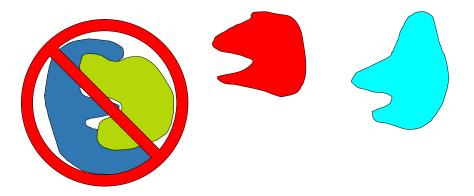

Source: Kohlbacher and Lenhof


### Lock and Key

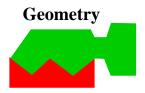


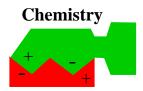

### Lock and Key

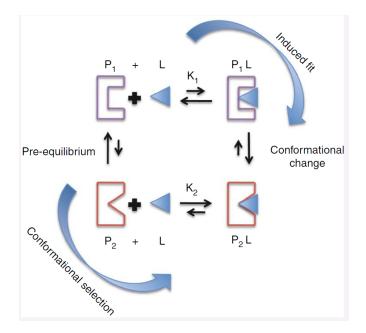



### Lock and Key

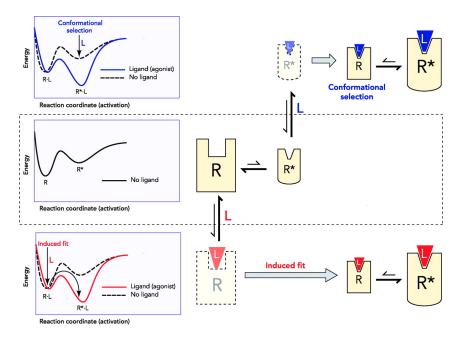



### Lock and Key



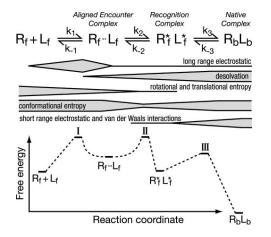


### Lock and Key




### Lock and Key








David D Boehr, Ruth Nussinov, and Peter E Wright (Nov. 2009). In: *Nat. Chem. Biol.* 5.11



Xavier Deupi and Brian K. Kobilka (Jan. 2010). en. In: Physiology 25.5

3-step mechanism of diffusion, free conformer selection, and refolding:



Raik Grünberg, Johan Leckner, and Michael Nilges (Dec. 2004). In: Structure 12.12

# Types of complexes



Enzymes and their inhibitors have co-evolved to form an interface with a high degree of surface complementarity

# Antibody / Antigen

- The immune system produces many different antibodies in response to an antigen, some of which bind their respective epitopes quite well while others bind quite poorly.
- Antibody => always the same binding site location
- Antigen => Highly variable binding site locations

#### Types of complexes

### Protein-Protein Docking Benchmark 4.0

#### http://zlab.umassmed.edu/benchmark/

- PDB => 1667 complex structures with unbound structures
- => 109 non-redundant complexes (according to SCOP families)
- => 176 unbound-unbound cases with reference complex structure

#### Table II

Statistics of the Three Classes of Difficulty in the Entire Benchmark 4.0 and the New Cases (in Parentheses)

|                      | I-RMSD                     | f <sub>nat</sub>           | f <sub>non-nat</sub>       | Number              |
|----------------------|----------------------------|----------------------------|----------------------------|---------------------|
| Rigid body<br>Medium | 0.90 (1.12)<br>1.76 (1.86) | 0.79 (0.80)<br>0.63 (0.66) | 0.21 (0.19)<br>0.35 (0.27) | 121 (33)<br>30 (11) |
| Difficult            | 3.76 (3.45)                | 0.51 (0.60)                | 0.51 (0.41)                | 25 (8)              |

52 enzyme-inhibitor, 25 antibody-antigen, 99 other functions [Hwang et al., Proteins 2010]

#### Types of complexes

# Protein-Protein Docking Benchmark 5.0 and Affinity Benchmark 2.0

#### http://zlab.umassmed.edu/benchmark/

Table 2. Composition of the updated docking and affinity benchmarks (in parentheses are values for the previous versions of the benchmarks, docking version 4 and affinity version 1).

|                                        | Docking   |           | Affinity  |           |
|----------------------------------------|-----------|-----------|-----------|-----------|
|                                        | N         | %         | N         | %         |
| All                                    | 230 (175) |           | 179 (144) |           |
| Enzyme containing                      | 88 (71)   | 38% (41%) | 69 (61)   | 39% (42%) |
| Antibody-antigen                       | 40 (24)   | 17% (14%) | 33 (19)   | 18% (13%) |
| Others                                 | 102 (80)  | 45% (45%) | 77 (64)   | 43% (45%) |
| Rigid body <sup>a</sup>                | 151 (119) | 65% (68%) |           |           |
| Medium <sup>a</sup>                    | 45 (29)   | 20% (17%) |           |           |
| Difficult <sup>a</sup>                 | 34 (27)   | 15% (15%) |           |           |
| Rigid (I-RMSD < 1.0 Å) <sup>a</sup>    |           |           | 93 (75)   | 52% (52%) |
| Flexible (I-RMSD > 1.0 Å) <sup>a</sup> |           |           | 86 (69)   | 48% (48%) |

\* See the materials and methods section for definition.

#### Thom Vreven et al. (Sept. 2015). en. In: Journal of Molecular Biology 427.19



- Scoring Functions
- Shape complementarity

- What distinguishes the true complex structure from "false positives"?
- *Physical chemistry:* Complex structure with the lowest binding free energy is the one observed in nature.
- Caveat: relies on sufficiently complete sampling of conformation space

# Prediction of Binding Free Energy

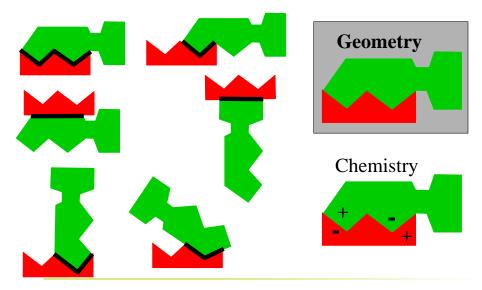
- Currently very difficult
- Would need to include entropic contributions and solvent effects
- Free energy prediction is also very difficult in:
  - Protein-ligand docking
  - Protein structure prediction

# Prediction of Binding Free Energy

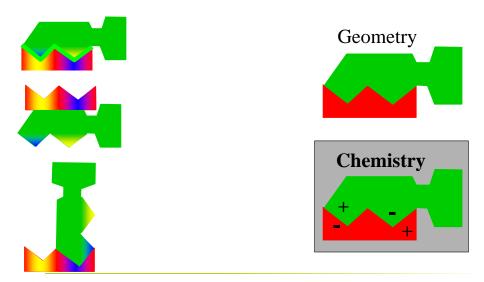
$$\Delta G_{binding} = \Delta G_{elec} + \Delta E_{vdW} + \Delta G_{des} + \Delta E_{int} - T\Delta S_{sc} - T\Delta S_{bb} \quad (1)$$

 $\Delta G_{elec}$  electrostatic,  $\Delta E_{vdW}$  van der Waals,  $\Delta G_{des}$  desolvation,  $\Delta E_{int}$  conformational changes upon binding

 $-T\Delta S_{sc}$  and  $-T\Delta S_{bb}$  entropy changes from side chain and backbone, respectively.


Brian Pierce and Zhiping Weng (Jan. 2007). en. In: *Computational Methods for Protein Structure Prediction and Modeling*. Biological and Medical Physics, Biomedical Engineering

# Alternative: Scoring Functions


#### Geometry:

- Lock and key principle
- Large contact areas are favorable
- Steric clashes / overlaps should be avoided
- Chemistry:
  - Models based on physicochemistry
  - Compromise between speed and accuracy
- Scoring functions must be accurate and fast at the same time to evaluate serval billions of docking poses.
- Scoring functions based only on geometry or only on chemistry are not successful in general.

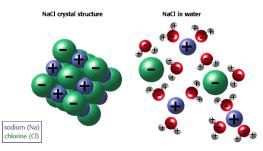
## Geometry and Chemistry



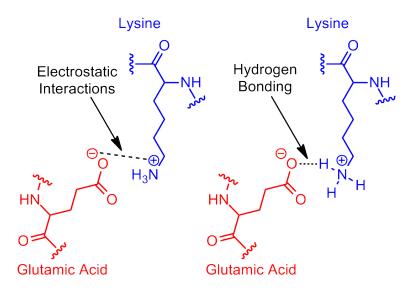
# Geometry and Chemistry





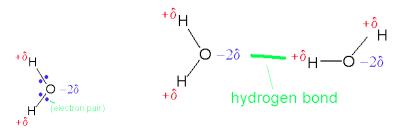

- Steric complementarity of shapes
- **2** Buried surface area (BSA) =  $SAS_A + SAS_B SAS_{AB}$ , typical values for complexes: 1200-2200 Å<sup>2</sup>




- Electrostatic interactions
- Hydrogen bonding
- *Desolvation*: Exclusion of the solvent from the interface => solvent entropy change

## Pont salin (salt bridge, ion-pairing)

- interaction électrostatique entre deux (ou plus) résidus chargés
- peut inclure des liaisons hydrogènes, ce n'est pas un terme orthogonal à "liaison hydrogène"
- plus qu'une simple liaison hydrogène, forte interaction monopole
- ne dépend pas de la directionnalité
- atténué par l'eau qui fait écran
- pas souvent enfoui dans la protéine, malgré l'absence d'écran, car énergie libre favorable si en contacte avec l'eau.




### Pont salin (salt bridge or ion-pair)



# Liaisons hydrogènes (hydrogen bonds)

- Liaisons hydrogènes:
  - Interaction électrostatique entre des groupements sans charge formelle
  - Polarisation: Électrons sont attirés par les atomes électronégatifs (O, N et un peu aussi S), mais restent partagés à travers la liaison covalente
  - Ceci crée un moment dipolaire
  - => Formation d'une liaison hydrogène
  - Distance entre les deux O de H2O: 2,8 Å





serine







:=0











—сн<sub>ё</sub>сн<sub>ё</sub>с

histidine

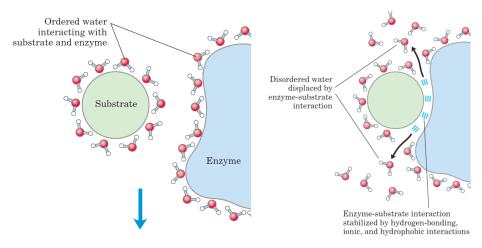






lysine



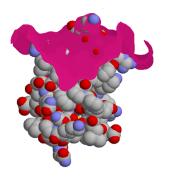

tryptophan



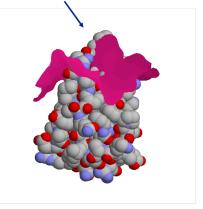
hydrogen bond acceptor -

# Désolvatation

#### Désolvatation:

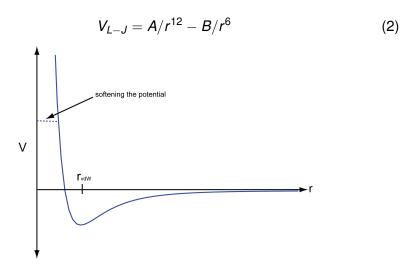



# Categories of scoring functions


- Knowledge-based
- Empirical
- Forcefield-based

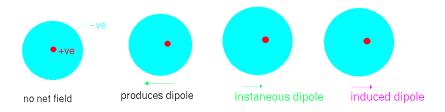
Irina S Moreira, Pedro A Fernandes, and Maria J Ramos (Jan. 2010). In: *J Comput Chem* 31.2

# Bound VS unbound



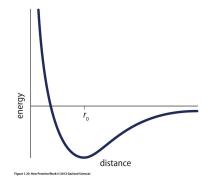

### 10 highly penetrating residues




Kallikrein A/trypsin inhibitor complex (PDB codes 2KAI,6PTI)

### Soft van der Waals



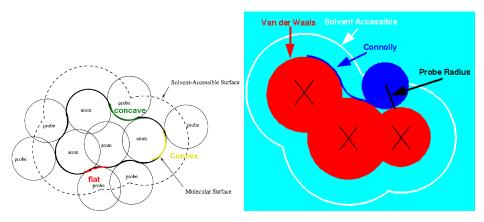

Brian Pierce and Zhiping Weng (Jan. 2007). en. In: Computational Methods for Protein Structure Prediction and Modeling. Biological and Medical Physics, Biomedical Engineering

### Force de dispersion ou van der Waals



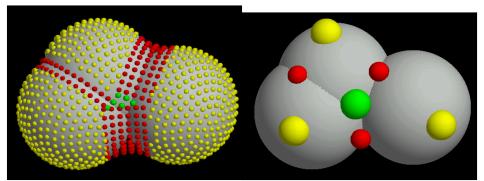
- Fluctuations de la densité des électrons autour du noyau d'un atome, créent un moment dipolaire temporaire.
- Ce moment dipolaire induit à un autre atome très proche aussi un moment dipolaire transitoire
- Résultat: force attractive  $F_{disp} = -B_{ij}/r_{ij}^6$ , faible mais additive

## van der Waals - potentiel de Lennard-Jones




- Résultat: force attractive  $F_{disp} = -B_{ij}/r_{ij}^6$ , faible mais additive
- Répulsion (principe de Pauli):  $F_{rep} = A_{ij}/r_{ij}^{12}$
- Total:  $F_{total} = A_{ij} / r_{ij}^{12} B_{ij} / r_{ij}^{6}$
- Rayons de van der Waals (minimum du potentiel r<sub>0</sub>): C (1,85Å), O (1,60Å), H (1,0Å), N (1,75Å)

### 4 Rigid-body docking

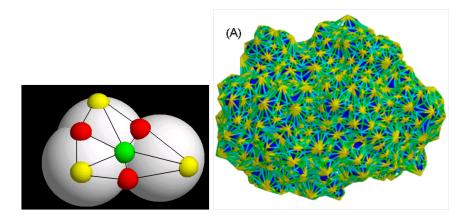

- Geometric docking
- Fast Fourier Transform (FFT) docking

### Solvent accessible surface - SAS Connolly's MS (molecular surface) algorithm



Cai 1998 / http://www.simbiosys.ca/sprout/eccc/cangaroo.html

## Dot surface VS critical points




(a) dense, Connolly

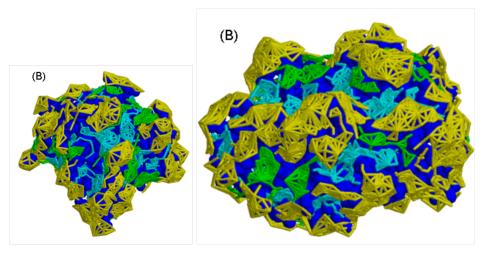
(b) sparse, Lin et al. 1994

green = concave, yellow = convex, red = flat

# Topological graph G<sub>top</sub>



Color code of the right figure: yellow = knob, cyan = hole, green = flat, dark blue = protein surface http://bioinfo3d.cs.tau.ac.il/Education/Workshop02a/


## Group critical points as patches

Goal: divide the surface into connected, non-intersecting, equal sized patches of critical points with similar curvature.

- *connected* the points of the patch correspond to a connected sub-graph of *G*<sub>top</sub>.
- *similar curvature* all the points of the patch correspond to only one type: knobs, flats or holes.
- equal sized to assure better matching we want shape features of almost the same size.

http://bioinfo3d.cs.tau.ac.il/Education/Workshop02a/

## Group critical points as patches



yellow = knob, cyan = hole, green = flat, dark blue = protein surface http://bioinfo3d.cs.tau.ac.il/Education/Workshop02a/

# Surface Patch Matching

Knob <-> hole patches and flat patches <-> any patch

- Single Patch Matching: One patch of the receptor with one patch of the ligand, for small ligands
- Patch-Pair Matching: Two patches of the receptor with two patches of the ligand, for protein-protein complexes

Match critical points within patches by computer vision techniques:

- Geometric Hashing
- Pose Clustering

Dina Duhovny, Ruth Nussinov, and Haim J. Wolfson (2002). In: In WABI '02: Proceedings of the Second International Workshop on Algorithms in Bioinformatics

## Surface Patch Matching



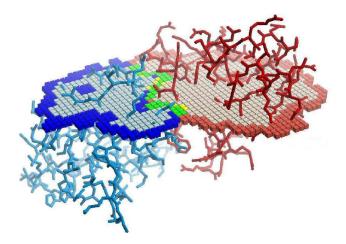
Molecular Docking Algorithm Based on Shape Complementarity Principles [About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Type PDB codes of receptor and ligand molecules or upload files in PDB format

| Receptor Molecule: |           |
|--------------------|-----------|
| Ligand Molecule:   |           |
| e-mail address:    |           |
| Clustering RMSD:   | 4.0       |
| Complex Type:      | Default 💌 |
| Submit Form Clear  |           |

(PDB:chain1d e.g. 2kai:AB) or upload file: (PDB:chain1d e.g. 2kai:1) or upload file: (the results are sent to this address)

Parcourir..


Be sure to give receptor and ligand in the corresponding order!

= ?

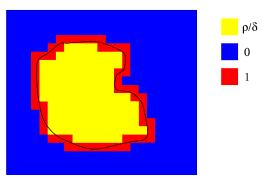
Advanced Options: [Show][Hide]

FireDock - Fast Interaction Refinement in Molecular Docking SymmDock - An Algorithm for Prediction of Complexes with C<sub>n</sub> Symmetry.

### 3D grid



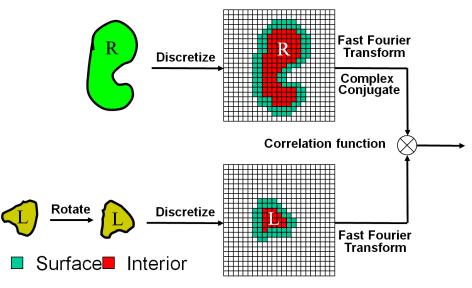
P N Palma et al. (June 2000). In: *Proteins* 39.4 Luc P Nuno Palma (July 2003). In: *Proteins* 52.1


Ludwig Krippahl, José J Moura, and

# Katchalski-Katzir et al., PNAS 1992

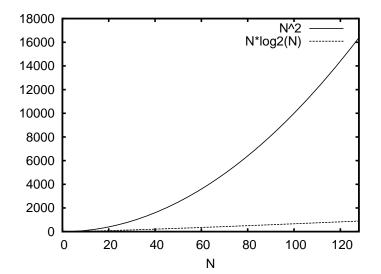
- Protein on grid
- Assign values
  - $-a_{i,j,k} =$ 
    - 1 at the surface of A
    - $\rho \ll 0$  inside A
    - 0 outside
  - $-b_{i,j,k} =$

7

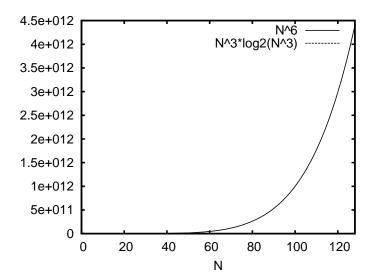

- 1 at the surface of B
- $\delta > 0$  inside B
- 0 outside B



| AB      | inside              | surface | outside |
|---------|---------------------|---------|---------|
| inside  | $\rho * \delta < 0$ | ρ < 0   | 0       |
| surface | $\delta > 0$        | 1       | 0       |
| outside | 0                   | 0       | 0       |

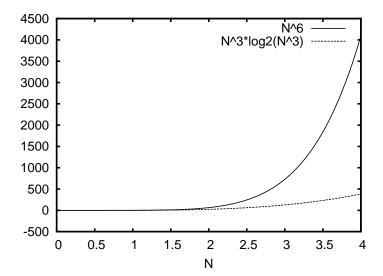

#### Source: Kohlbacher and Lenhof

### **Discrete Fast Fourier Transform**

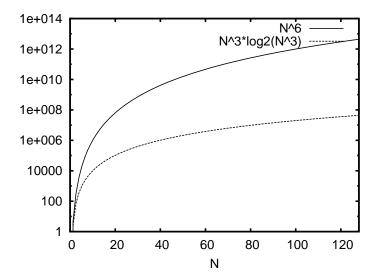



Source: Rong Chen

## FFT speedup - 1D

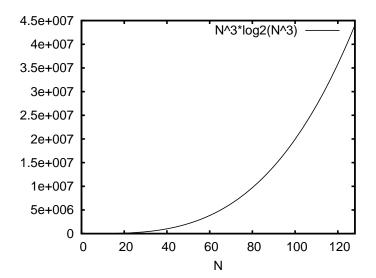



## FFT speedup - 3D




86

## FFT speedup - 3D




## FFT speedup - 3D



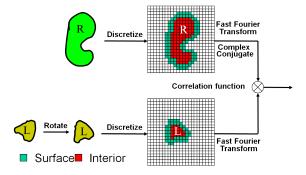
88

## FFT speedup - 3D



89

## ZDOCK: a FFT docking program


- Grid spacing: 1.2 Å
- Grid points N = 128 for the largest protein (about 150 Å cube side length), otherwise N = 100
- 128<sup>3</sup> = 2 million grid points => 2 million different translation vectors (α, β, γ)
- Without FFT => 128<sup>6</sup> = 4.4 · 10<sup>12</sup> = 4400 billion elementary operations (addition or multiplication)
- With FFT => 128<sup>3</sup> · log<sub>2</sub>(128<sup>3</sup>) = 2.1 · 10<sup>6</sup> · 21 = 44 million elementary operations
- => 10<sup>5</sup> times faster with FFT ! Rong Chen and Zhiping Weng (May 2002). In: *Proteins* 47.3

### Ligand rotations

ZDOCK 2.3-3.x => two rotational sampling options (non-redundant rotations, uniform sampling of the sphere):

• 
$$\Delta = 15 degrees => M_{rot} = 3600$$
  
=>  $M_{rot} \cdot N^3 = 7.5$  billion docking poses

$$\Delta = 6 degrees => M_{rot} = 54000$$
$$=> M_{rot} \cdot N^3 = 113$$
 billion docking poses



## Total number of operations

$$M_{trans+corr} = N^3 \cdot \log_2(N^3) \tag{3}$$

$$M_{total} = M_{rot} \cdot M_{trans+corr} = M_{rot} \cdot N^3 \cdot log_2(N^3)$$
(4)

ZDOCK 2.3-3.x =>

 $M_{total}$  = 160 billion operations with  $M_{rot}$  = 3600 => average runtime (2.3: 1h, 3.0: 3h)

 $M_{total}$  = 2300 billion operations with  $M_{rot}$  = 54000 => average runtime (2.3: 15h, 3.0: 45h)

Brian G Pierce, Yuichiro Hourai, and Zhiping Weng (2011). In: PLoS ONE 6.9



- Performance of docking programs
- CAPRI

# Performance of docking programs

# **CAPRI**

# Assessing structural predictions in community-wide experiments: CAPRI and CASP

#### > CASP (Critical Assessment of methods of Structure Prediction):

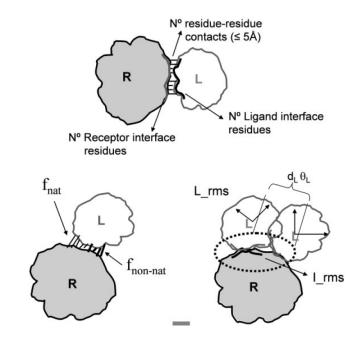
- predict the mode of folding of a protein based on the amino acid sequence
- compare to an unpublished X-ray or NMR structure.
- J. Moult (CARB, Rockville MD) launched CASP in 1994
- round of predictions once every two years (CASP8 in 2008) with 50-100 targets

#### > CAPRI (Critical Assessment of PRedicted Interactions):

- predict the mode of recognition of two proteins by docking their 3D structures
- compare to unpublished X-ray structures of protein-protein complexes.
- CAPRI started in 2001
- · a round of prediction begins any time a target is made available

http://capri.ebi.ac.uk/

CAPRI


## **CAPRI** star evaluation

# The CAPRI star system

Mendez, Leplae, Wodak 2003 Lensink et al. 2005, 2007, 2010

| % native contacts main chain RMSD (Å)<br>(correctly predicted residue pairs) Ligand Interface |               |                 |                                   |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|---------------|-----------------|-----------------------------------|--|--|--|--|--|--|--|
| Model qua                                                                                     | ality         | f <sub>nc</sub> | L <sub>rms</sub> I <sub>rms</sub> |  |  |  |  |  |  |  |
| High                                                                                          | (three-star)  | > 50%           | <1 Å or <1 Å                      |  |  |  |  |  |  |  |
| Good                                                                                          | (two-star)    | > 30%           | <5 or <2                          |  |  |  |  |  |  |  |
| Acceptab                                                                                      | le (one-star) | > 10%           | < 10 or < 4                       |  |  |  |  |  |  |  |
| Incorrect                                                                                     |               | < 10%           | >10 and >4                        |  |  |  |  |  |  |  |

#### Source: Janin, LIX 2010



Raúl Méndez et al. (Aug. 2005). In: Proteins 60.2



- Each group gets the input structures (bound, unbound or sequence only).
- Some weeks later they have to submit 10 models for the complex.
- Exception: web-servers have to submit within 24h to prevent "human scoring".
- The best model out of the 10 models is used to evaluate the performance of one group or web-server.
- Solution of the second sec

#### Table III

Summary of Target Prediction Performance in CAPRI Rounds 13-19

|     |           |           |    | *** |    |    | **  |    | *  |     |    |
|-----|-----------|-----------|----|-----|----|----|-----|----|----|-----|----|
|     | L-rms (Å) | R-rms (Å) | Ρ  | U   | S  | Ρ  | U   | S  | Ρ  | U   | S  |
| T29 | 1.7       | В         | 0  | 2   | 1  | 9  | 78  | 13 | 8  | 87  | 13 |
| T30 | 1.7       | 2.3       | 0  | 0   | 0  | 0  | 0   | 0  | 2  | 2   | 0  |
| T32 | 0.3       | 2.1       | 15 | 0   | 0  | 13 | 3   | 0  | 6  | 12  | 2  |
| T33 | 2.0       | 2.6       | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0   | 0  |
| T34 | 2.0       | В         | 0  | 0   | 0  | 25 | 13  | 4  | 40 | 165 | 26 |
| T35 | 2.9       | 2.9       | 0  | 0   | 0  | 0  | 0   | 0  | 1  | 2   | 1  |
| T36 | 2.9       | В         | 0  | 0   | 0  | 0  | 0   | 0  | 1  | 0   | 0  |
| T37 | 0.6       | 0.4       | 1  | 8   | 5  | 7  | 34  | 13 | 13 | 34  | 11 |
| T38 | 3.2       | 1.9       | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0   | 0  |
| T39 | 3.2       | В         | 1  | 0   | 0  | 2  | 3   | 0  | 0  | 1   | 0  |
| T40 | В         | 0.4       | 79 | 176 | 39 | 54 | 163 | 40 | 31 | 149 | 13 |
| T41 | 2.0       | 1.5       | 24 | 2   | 2  | 58 | 99  | 16 | 67 | 198 | 51 |
| T42 | 1.5       | 1.5       | 9  |     |    | 5  |     |    | 6  |     |    |

#### Marc F Lensink and Shoshana J Wodak (Nov. 2010). In: Proteins 78.15

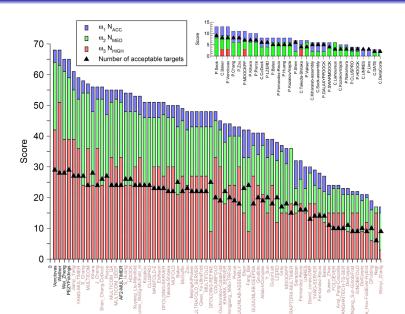
# Web-server (en 2010)

### Table V

Prediction Performance of Web-Servers

| Target    | 29 | 30 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39  | 40     | 41      | 42   |
|-----------|----|----|----|----|----|----|----|----|----|-----|--------|---------|------|
| ClusPro   | 0  | 0  | 0  | 0  | 1* | 0  | 0  | 0  | 0  | 1** | 2/1**  | 1**     | 1*** |
| FiberDock |    |    |    |    |    |    |    |    |    |     |        | 10/1*** | 0    |
| FireDock  |    |    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 2/1*** |         |      |
| GRAMM-X   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 2***   | 1***    | 0    |
| HADDOCK   |    |    | 0  | 0  | 7* | 0  | 0  | 0  | 0  | 0   | 1***   | 4/1**   | 1*   |
| SKE-DOCK  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2* | 0  | 0   | 2/1*** | 0       | 0    |
| Top down  |    |    |    |    |    |    |    | 0  | 0  |     | 2/1**  | 0       | 0    |

Marc F Lensink and Shoshana J Wodak (Nov. 2010). In: Proteins 78.15


# Conclusion (before AlphaFold)

Is the protein-protein docking problem solved ? Not really:

- Final goal: best structure at first rank
- CAPRI results:
  - Best structure at top 10 => still up to 90% (worst case) false positives
  - No program works for all complexes
  - Bad performance of non-human scores, i.e. web-servers
  - Scores are only a first help for "human scorers"

#### CAPRI

## CASP 15 (2022): joint CASP-CAPRI experiment



#### 103

# CASP 15 (2022): joint CASP-CAPRI experiment

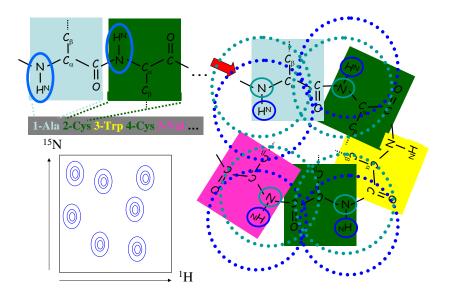
- Huge improvement from previous CASP-CAPRI (2020) experiment, due to AlphaFold 2 and AlphaFold-Multimer
- for 40% of the targets high quality models have been obtained (previously: only 8%)
- Webservers are on par with human groups
- Antibodies and Nanobodies remain challenging
- Targets with important conformational flexibility remain challenging Marc F. Lensink et al. (2023). en. In: *Proteins: Structure, Function, and Bioinformatics* 91.12

Is the protein-protein docking problem solved ? Challenges:

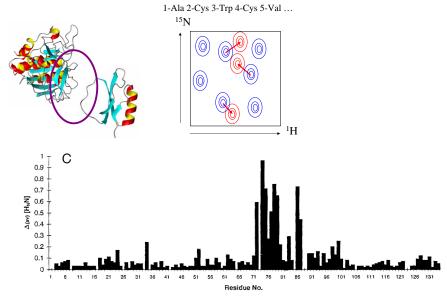
- Better sampling and scoring
- Conformational changes upon binding
- Predicting domain motions
- Folding upon binding
- Large scale docking => Interactome, Large molecular assemblies
- Predicting which proteins interact => Predicting binding affinities



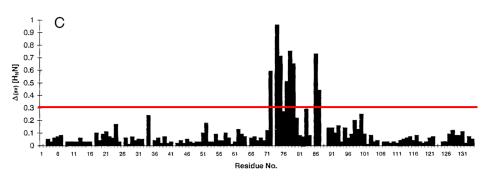
Is the protein-protein docking problem solved ? Not really and a there are still a lot of challenges. One possible solution:


• Combine docking with experimental data (NMR, mutagenesis, cryo-EM, SAXS, ...)

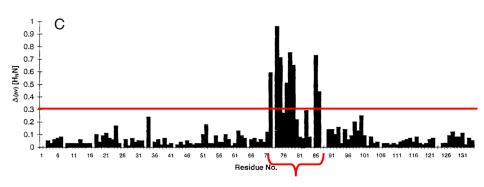
## 6 Inclusion of experimental data


- NMR chemical shifts
- CS-HADDOCK

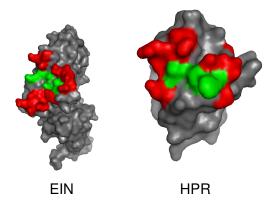
# NMR - chemical shifts


### Chemical shift



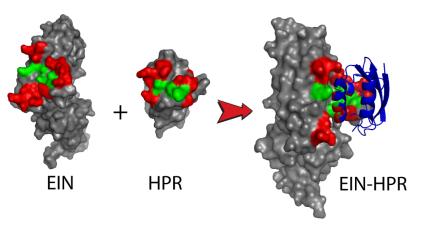

### Chemical Shift Perturbation (CSP)




### Chemical Shift Perturbation (CSP)

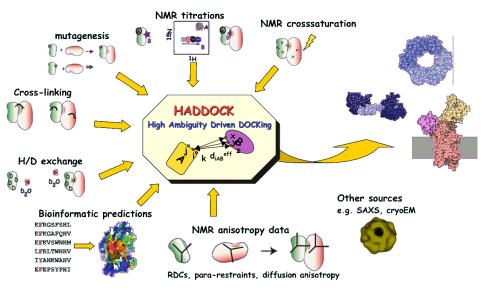


### Chemical Shift Perturbation (CSP)

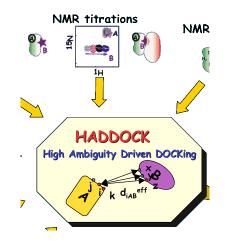



### Interface localization on 3D structures

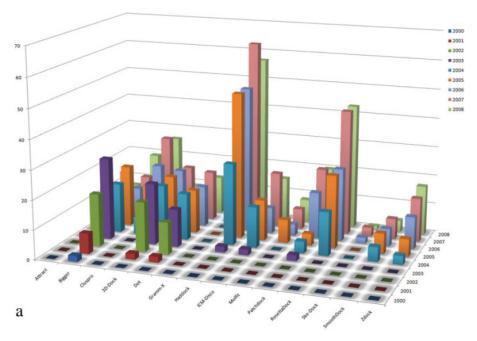



red = active residues derived from CSP data and surface accessibility green = passive residues, i.e. the surface neighbors of the active residues

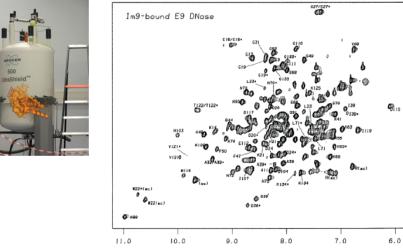
### Docking




red = active residues derived from CSP data and surface accessibility green = passive residues, i.e. the surface neighbors of the active residues


### Haddock - http://haddock.chem.uu.nl




### Haddock - http://haddock.chem.uu.nl



 $E_{Haddock} = E_{vdW} + E_{elec} + E_{AIR} + E_{desolv}$ 



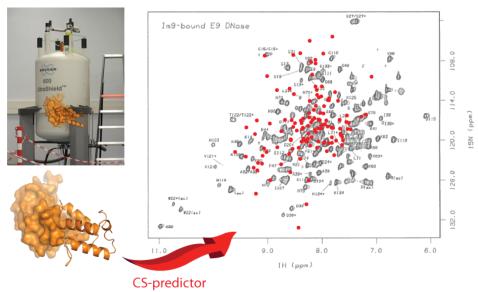
### 3D to CS



1H (ppm)

(wdd) NGI

108.0


114.0

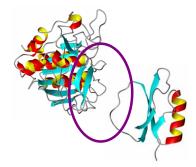
120.0

126.0

132.0

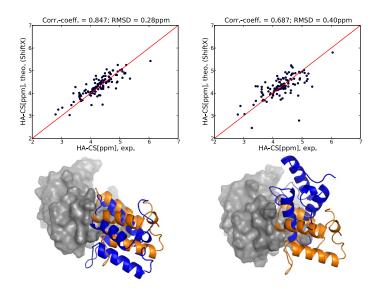
### 3D to CS



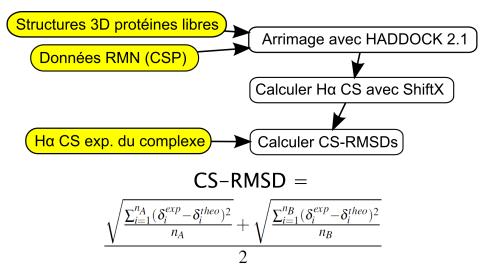

119

# 3D to CS with ShiftX

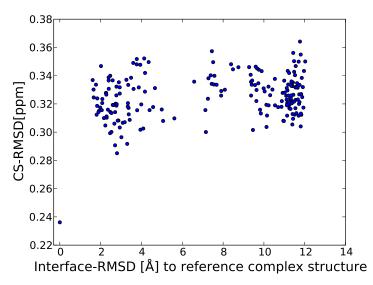
Contributions to calculated CS  $\delta_{calc}$ :

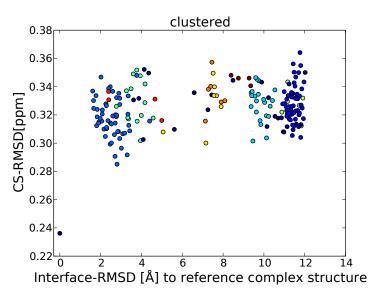

$$\delta_{\textit{calc}} = \delta_{\textit{coil}} + \delta_{\textit{RC}} + \delta_{\textit{EF}} + \delta_{\textit{HB}} + \delta_{\textit{HS}}$$

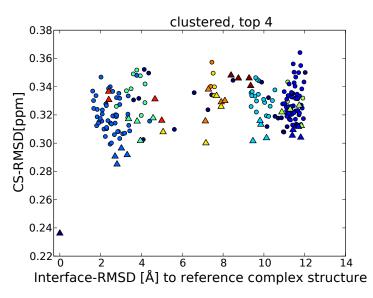
- $\delta_{coil}$  random coil (amino acid type)
- $\delta_{RC}$  ring current
- $\delta_{EF}$  electric field
- $\delta_{HB}$  hydrogen bonding
- δ<sub>HS</sub> empirical hypersurfaces (backbone dihedral angles)

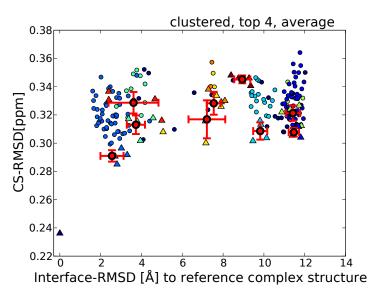



Neal et al., J. Biomol. NMR 26: 215-240, 2003

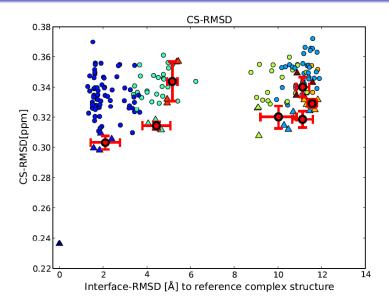

# RMSD between $\delta_{calc}$ and $\delta_{exp}$ for ${}^{1}H^{\alpha}$ -CS



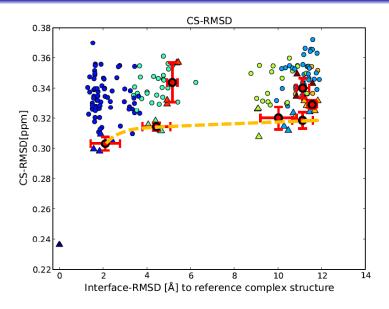


### Protocole d'arrimage CS-HADDOCK



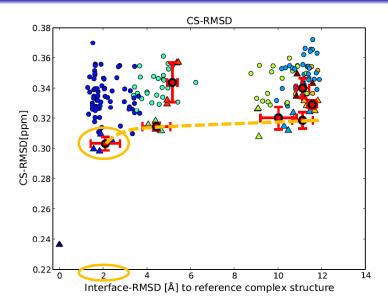

Dirk Stratmann, Rolf Boelens, and Alexandre M J J Bonvin (Sept. 2011). In: *Proteins* 79.9 **122** 



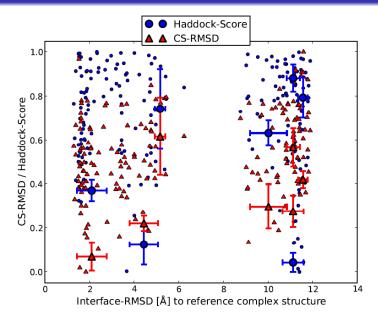


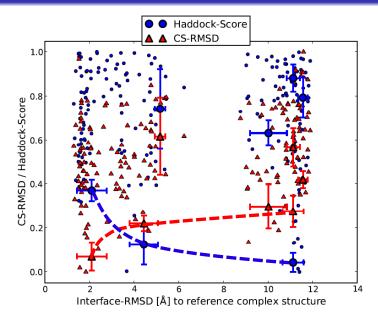




### Classement des clusters de structures par CS-RMSD




### Classement des clusters de structures par CS-RMSD




### Classement des clusters de structures par CS-RMSD

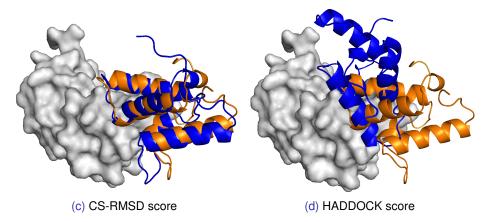


### **CS-HADDOCK vs HADDOCK**



### **CS-HADDOCK vs HADDOCK**




**128** 

### **CS-HADDOCK vs HADDOCK**



## **CS-HADDOCK vs HADDOCK**

Meilleure structure (en bleu) par rapport à la référence (en orange):





# Bibliography I

- Boehr, David D, Ruth Nussinov, and Peter E Wright (Nov. 2009). "The role of dynamic conformational ensembles in biomolecular recognition". In: *Nat. Chem. Biol.* 5.11. PMID: 19841628, pp. 789–796.
- Chen, Rong and Zhiping Weng (May 2002). "Docking unbound proteins using shape complementarity, desolvation, and electrostatics". In: *Proteins* 47.3. PMID: 11948782, pp. 281–294.
- Connolly, M L (July 1986). "Shape complementarity at the hemoglobin alpha 1 beta 1 subunit interface". In: *Biopolymers* 25.7. PMID: 3741993, pp. 1229–1247.
- Deupi, Xavier and Brian K. Kobilka (Jan. 2010). "Energy Landscapes as a Tool to Integrate GPCR Structure, Dynamics, and Function". en. In: *Physiology* 25.5, pp. 293–303.
- Duhovny, Dina, Ruth Nussinov, and Haim J. Wolfson (2002). "Efficient unbound docking of rigid molecules". In: In WABI '02: Proceedings of the Second International Workshop on Algorithms in Bioinformatics. Springer Verlag, pp. 185–200.
- Grünberg, Raik, Johan Leckner, and Michael Nilges (Dec. 2004). "Complementarity of structure ensembles in protein-protein binding". In: *Structure* 12.12. PMID: 15576027, pp. 2125–2136.

# **Bibliography II**

- Halperin, Inbal et al. (June 2002). "Principles of docking: An overview of search algorithms and a guide to scoring functions". In: *Proteins* 47.4. PMID: 12001221, pp. 409–443.
- Krippahl, Ludwig, José J Moura, and P Nuno Palma (July 2003). "Modeling protein complexes with BiGGER". In: *Proteins* 52.1. PMID: 12784362, pp. 19–23.
- Lensink, Marc F and Shoshana J Wodak (Nov. 2010). "Docking and scoring protein interactions: CAPRI 2009". In: *Proteins* 78.15. PMID: 20806235, pp. 3073–3084.
- Lensink, Marc F. et al. (2023). "Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment". en. In: *Proteins: Structure, Function, and Bioinformatics* 91.12. \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.26609, pp. 1658–1683.
- Méndez, Raúl et al. (Aug. 2005). "Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures". In: *Proteins* 60.2. PMID: 15981261, pp. 150–169.
- Moreira, Irina S, Pedro A Fernandes, and Maria J Ramos (Jan. 2010).
   "Protein-protein docking dealing with the unknown". In: *J Comput Chem* 31.2. PMID: 19462412, pp. 317–342.

# **Bibliography III**

- Nooren, I. M.A. (July 2003). "NEW EMBO MEMBER'S REVIEW: Diversity of protein-protein interactions". en. In: *The EMBO Journal* 22.14, pp. 3486–3492.
- Palma, P N et al. (June 2000). "BiGGER: a new (soft) docking algorithm for predicting protein interactions". In: *Proteins* 39.4. PMID: 10813819, pp. 372–384.
- Pierce, Brian and Zhiping Weng (Jan. 2007). "Structure Prediction of Protein Complexes". en. In: Computational Methods for Protein Structure Prediction and Modeling. Ed. by Ying Xu, Dong Xu, and Jie Liang. Biological and Medical Physics, Biomedical Engineering. Springer New York, pp. 109–134.
- Pierce, Brian G, Yuichiro Hourai, and Zhiping Weng (2011). "Accelerating protein docking in ZDOCK using an advanced 3D convolution library". In: *PLoS ONE* 6.9. PMID: 21949741, e24657.
- Scott, Duncan E. et al. (Aug. 2016). "Small molecules, big targets: drug discovery faces the protein–protein interaction challenge". en. In: *Nat Rev Drug Discov* 15.8. Number: 8 Publisher: Nature Publishing Group, pp. 533–550.
- Siebenmorgen, Till and Martin Zacharias (May 2020). "Computational prediction of protein–protein binding affinities". en. In: *WIREs Comput Mol Sci* 10.3, e1448.
- Sikosek, Tobias and Hue Sun Chan (Nov. 2014). "Biophysics of protein evolution and evolutionary protein biophysics". en. In: *J. R. Soc. Interface*. 11.100, p. 20140419.

# Bibliography IV

- Smith, Graham R and Michael J E Sternberg (Feb. 2002). "Prediction of protein-protein interactions by docking methods". In: *Curr. Opin. Struct. Biol.* 12.1. PMID: 11839486, pp. 28–35.
- Stratmann, Dirk, Rolf Boelens, and Alexandre M J J Bonvin (Sept. 2011).
   "Quantitative use of chemical shifts for the modeling of protein complexes". In: *Proteins* 79.9. PMID: 21744392, pp. 2662–2670.
- Vreven, Thom et al. (Sept. 2015). "Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2". en. In: *Journal of Molecular Biology* 427.19, pp. 3031–3041.
- Xu, Qifang and Roland L Dunbrack (Apr. 2019). "Principles and characteristics of biological assemblies in experimentally determined protein structures". In: *Current Opinion in Structural Biology*. Macromolecular Assemblies \* Theory and simulation: Demystifying GPCRs 55, pp. 34–49.